A Pilot Proof-Of-Principle Analysis Demonstrating Dielectrophoresis (DEP) as a Glioblastoma Biomarker Platform

In this article, the authors used Biological Dynamic ACE technology to screen plasma samples from brain cancer patients for the presence of both the exosome-associated proteins Tau and GFAP.

Lewis J, Alattar AA, Akers J, Carter BS, Heller MJ, Chen CC. Nature Sci Rep. 2019 Jul 16. doi: 10.1038/s41598-019-46311-8.


ABSTRACT

Extracellular vesicles (EVs) are small, membrane-bound particles released by all cells that have emerged as an attractive biomarker platform. We study the utility of a dielectrophoretic (DEP) micro-chip device for isolation and characterization of EVs derived from plasma specimens from patients with brain tumors. EVs were isolated by DEP chip and subjected to on-chip immunofluorescence (IF) staining to determine the concentration of glial fibrillary acidic protein (GFAP) and Tau. EVs were analyzed from the plasma samples isolated from independent patient cohorts. Glioblastoma cell lines secrete EVs enriched for GFAP and Tau. These EVs can be efficiently isolated using the DEP platform. Application of DEP to clinical plasma samples afforded discrimination of plasma derived from brain tumor patients relative to those derived from patients without history of brain cancer. Sixty-five percent (11/17) of brain tumor patients showed higher EV-GFAP than the maximum observed in controls. Ninety-four percent (16/17) of tumor patients showed higher EV-Tau than the maximum observed in controls. These discrimination thresholds were applied to plasma isolated from a second, independent cohort of 15 glioblastoma patients and 8 controls. For EV-GFAP, we observed 93% sensitivity, 38% specificity, 74% PPV, 75% NPV, and AUC of 0.65; for EV-Tau, we found 67% sensitivity, 75% specificity 83% PPV, 55% NPV, and AUC of 0.71 for glioblastoma diagnosis. This proof-of-principle study provides support for DEP-IF of plasma EVs for diagnosis of glioblastoma.

ARTICLE INFORMATION

Integrated Analysis of Exosomal Protein Biomarkers on Alternating Current Electrokinetic Chips Enables Rapid Detection of Pancreatic Cancer in Patient Blood

In this article, the authors used Biological Dynamic ACE technology to screen whole blood and plasma samples from pancreatic cancer patients for the presence of both the exosome-associated protein CD63 and glypican-1 (GPC-1).

 Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ. ACS Nano. 2018 Mar 28. doi: 10.1021/acsnano.7b08199.


ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) typically has nonspecific symptoms and is often found too late to treat. Because diagnosis of PDAC involves complex, invasive, and expensive procedures, screening populations at increased risk will depend on developing rapid, sensitive, specific, and cost-effective tests. Exosomes, which are nanoscale vesicles shed into blood from tumors, have come into focus as valuable entities for noninvasive liquid biopsy diagnostics. However, rapid capture and analysis of exosomes with their protein and other biomarkers have proven difficult. Here, we present a simple method integrating capture and analysis of exosomes and other extracellular vesicles directly from whole blood, plasma, or serum onto an AC electrokinetic microarray chip. In this process, no pretreatment or dilution of sample is required, nor is it necessary to use capture antibodies or other affinity techniques. Subsequent on-chip immunofluorescence analysis permits specific identification and quantification of target biomarkers within as little as 30 min total time. In this initial validation study, the biomarkers glypican-1 and CD63 were found to reflect the presence of PDAC and thus were used to develop a bivariate model for detecting PDAC. Twenty PDAC patient samples could be distinguished from 11 healthy subjects with 99% sensitivity and 82% specificity. In a smaller group of colon cancer patient samples, elevated glypican-1 was observed for metastatic but not for nonmetastatic disease. The speed and simplicity of ACE exosome capture and on-chip biomarker detection, combined with the ability to use whole blood, will enable seamless "sample-to-answer" liquid biopsy screening and improve early stage cancer diagnostics.

ARTICLE INFORMATION