On‐chip dielectrophoretic recovery and detection of a lactate sensing probiotic from model human saliva

Hamilton S, Shea D, Ibsen S, Brasino M. doi: 10.1002/elps.202200214.

Abstract

Early detection has led to increased survival for multiple cancers; however, the 5-year survival rate of oral carcinoma (OC) has remained at 40% for the last several decades. Screening for OC is routinely done via visual examinations, followed by tissue biopsy and laboratory testing. Point-of-care testing would be a more convenient and widely available alternative for at-risk individuals. Increased lactate production is a hallmark of many head-and-neck tumors, due to the Warburg Effect, where tumor cells favor glycolysis in the place of oxidative phosphorylation. To detect excess lactate, we have modified the commensal bacterium Escherichia coli Nissle 1917 to express fluorescent reporter genes in response to extracellular lactate. Administering this commensal as a mouth wash and subsequently collecting saliva for the detection of the reporter may allow for noninvasive, early detection of cancerous lesions in at-risk individuals. Furthermore, we demonstrate a new on-chip electrokinetic technique to recover these probiotic probes from model saliva fluid to improve the detection of reporter gene activation.

cyc‐DEP: Cyclic immunofluorescence profiling of particles collected using dielectrophoresis

Gustafson KT, Sayar Z, Le H, Gustafson SL, Gower A, Modestino A, Ibsen S, Heller MJ, Esener S, Eksi SE. cyc-DEP: doi: 10.1002/elps.202200001

Abstract

Cancer is a highly heterogenous disease that requires precise detection tools and active surveillance methods. Liquid biopsy assays provide an agnostic way to follow the complex trajectory of cancer, providing better patient stratification tools for optimized treatment. Here, we present the development of a low-volume liquid biopsy assay called cyc-DEP (cyclic immunofluorescent imaging on dielectrophoretic chip) to profile biomarkers collected on a dielectrophoretic microfluidic chip platform. To enable on-chip cyclic imaging, we optimized a fluorophore quenching method and sequential rounds of on-chip staining with fluorescently conjugated primary antibodies. cyc-DEP allows for the quantification of a multiplex array of proteins using 25 µl of a patient plasma sample. We utilized nanoparticles from a prostate adenocarcinoma (LNCaP) cell line and a panel of six target proteins to develop our proof-of-concept technique. We then used cyc-DEP to quantify blood plasma levels of target proteins from healthy individuals, low-grade and high-grade prostate cancer patients (n = 3 each) in order to demonstrate that our platform is suitable for liquid biopsy analysis in its present form. To ensure accurate quantification of signal intensities and comparisons between different samples, we incorporated a signal intensity normalization method (fluorescent beads) and a custom signal intensity quantification algorithm that account for the distribution of signal across hundreds of collection regions on each chip. Our technique enabled a threefold improvement in multiplicity for detecting proteins associated with fluid samples, opening doors for early detection, and active surveillance through quantification of a multiplex array of biomarkers from low-volume liquid biopsies.

Theoretical and experimental analysis of negative dielectrophoresis‐induced particle trajectories

Luna R, Heineck DP, Bucher E, Heiser L, Ibsen SD. doi: 10.1002/elps.202100372.

Abstract

Many biomedical analysis applications require trapping and manipulating single cells and cell clusters within microfluidic devices. Dielectrophoresis (DEP) is a label-free technique that can achieve flexible cell trapping, without physical barriers, using electric field gradients created in the device by an electrode microarray. Little is known about how fluid flow forces created by the electrodes, such as thermally driven convection and electroosmosis, affect DEP-based cell capture under high conductance media conditions that simulate physiologically relevant fluids such as blood or plasma. Here, we compare theoretical trajectories of particles under the influence of negative DEP (nDEP) with observed trajectories of real particles in a high conductance buffer. We used 10-µm diameter polystyrene beads as model cells and tracked their trajectories in the DEP microfluidic chip. The theoretical nDEP trajectories were in close agreement with the observed particle behavior. This agreement indicates that the movement of the particles was highly dominated by the DEP force and that contributions from thermal- and electroosmotic-driven flows were negligible under these experimental conditions. The analysis protocol developed here offers a strategy that can be applied to future studies with different applied voltages, frequencies, conductivities, and polarization properties of the targeted particles and surrounding medium. These findings motivate further DEP device development to manipulate particle trajectories for trapping applications.

Automated fluorescence quantification of extracellular vesicles collected from blood plasma using dielectrophoresis

Gustafson KT, Huynh KT, Heineck D, Bueno J, Modestino A, Kim S, Gower A, Armstrong R, Schutt CE, Ibsen SD. doi: 10.1039/d0lc00940g.

Abstract

Tumor-secreted exosomes and other extracellular vesicles (EVs) in circulation contain valuable biomarkers for early cancer detection and screening. We have previously demonstrated collection of cancer-derived nanoparticles (NPs) directly from whole blood and plasma with a chip-based technique that uses a microelectrode array to generate dielectrophoretic (DEP) forces. This technique enables direct recovery of NPs from whole blood and plasma. The biomarker payloads associated with collected particles can be detected and quantified with immunostaining. Accurately separating the fluorescence intensity of stained biomarkers from background (BG) levels becomes a challenge when analyzing the blood from early-stage cancer patients in which biomarker concentrations are low. To address this challenge, we developed two complementary techniques to standardize the quantification of fluorescently immunolabeled biomarkers collected and concentrated at predictable locations within microfluidic chips. The first technique was an automated algorithm for the quantitative analysis of fluorescence intensity at collection regions within the chip compared to levels at adjacent regions. The algorithm used predictable locations of particle collection within the chip geometry to differentiate regions of collection and BG. We successfully automated the identification and removal of optical artifacts from quantitative calculations. We demonstrated that the automated system performs nearly the same as a human user following a standard protocol for manual artifact removal with Pearson's r-values of 0.999 and 0.998 for two different biomarkers (n = 36 patients). We defined a usable dynamic range of fluorescence intensities corresponding to 1 to 2000 arbitrary units (a.u.). Fluorescence intensities within the dynamic range increased linearly with respect to exposure time and particle concentration. The second technique was the implementation of an internal standard to adjust levels of biomarker fluorescence based on the relative collection efficiency of the chip. Use of the internal standard reduced variability in measured biomarker levels due to differences in chip-to-chip collection efficiency, especially at low biomarker concentrations. The internal standard did not affect linear trends between fluorescence intensity and exposure time. Adjustments using the internal standard improved linear trends between fluorescence intensity and particle concentration. The optical quantification techniques described in this paper can be easily adapted for other lab-on-a-chip platforms that have predefined regions of biomarker or particle collection and that rely on fluorescence detection.

Simultaneous Isolation of Circulating Nucleic Acids and EV-associated Protein Biomarkers From Unprocessed Plasma Using an AC Electrokinetics-Based Platform

In this article, the authors used Biological Dynamics technology based on AC Electrokinetics (ACE) for the simultaneous, rapid detection and isolation of cell-free DNA (cfDNA), extracellular vesicle RNA (EV-RNA), and EV-associated protein biomarkers directly from human biofluids.

Juan P. Hinestrosa, David J. Searson, Jean M. Lewis, Alfred Kinana, Orlando Perrera, Irina Dobrovolskaia, Kevin Tran, Robert Turner, Heath I. Balcer, Iryna Clark, David Bodkin, Dave S. Hoon and Rajaram Krishnan. doi.org/10.3389/fbioe.2020.581157.


ABSTRACT

The power of personalized medicine is based on a deep understanding of cellular and molecular processes underlying disease pathogenesis. Accurately characterizing and analyzing connections between these processes is dependent on our ability to access multiple classes of biomarkers (DNA, RNA, and proteins)—ideally, in a minimally processed state. Here, we characterize a biomarker isolation platform that enables simultaneous isolation and on-chip detection of cell-free DNA (cfDNA), extracellular vesicle RNA (EV-RNA), and EV-associated proteins in unprocessed biological fluids using AC Electrokinetics (ACE). Human biofluid samples were flowed over the ACE microelectrode array (ACE chip) on the Verita platform while an electrical signal was applied, inducing a field that reversibly captured biomarkers onto the microelectrode array. Isolated cfDNA, EV-RNA, and EV-associated proteins were visualized directly on the chip using DNA and RNA specific dyes or antigen-specific, directly conjugated antibodies (CD63, TSG101, PD-L1, GPC-1), respectively. Isolated material was also eluted off the chip and analyzed downstream by multiple methods, including PCR, RT-PCR, next-generation sequencing (NGS), capillary electrophoresis, and nanoparticle size characterization. The detection workflow confirmed the capture of cfDNA, EV-RNA, and EV-associated proteins from human biofluids on the ACE chip. Tumor specific variants and the mRNAs of housekeeping gene PGK1 were detected in cfDNA and RNA isolated directly from chips in PCR, NGS, and RT-PCR assays, demonstrating that high-quality material can be isolated from donor samples using the isolation workflow. Detection of the luminal membrane protein TSG101 with antibodies depended on membrane permeabilization, consistent with the presence of vesicles on the chip. Protein, morphological, and size characterization revealed that these vesicles had the characteristics of EVs. The results demonstrated that unprocessed cfDNA, EV-RNA, and EV-associated proteins can be isolated and simultaneously fluorescently analyzed on the ACE chip. The compatibility with established downstream technologies may also allow the use of the platform as a sample preparation method for workflows that could benefit from access to unprocessed exosomal, genomic, and proteomic biomarkers.

ARTICLE INFORMATION

Cancer Detection at your Fingertips: Smartphone-Enabled DNA Testing

This is Biological Dynamic's first publication about the use of Biological Dynamics ACE-based isolation platform for point-of-care applications.

Turner R, Madsen J, Herrera P, Wallace J, Madrigal J, Hinestrosa JP, Dobrovolskaia I, Krishnan R, "Cancer Detection at your Fingertips: Smartphone-Enabled DNA Testing" paper presented to 40th International Engineering in Medicine and Biology Conference in in Honolulu, Hawaii on July 21, 2018.


ABSTRACT: High molecular weight cell-free DNA (hmw cfDNA) found in biological fluid, such as blood, is a promising biomarker for cancer detection. Due to the abundance of background apoptotic cell-free DNA in blood, quantifying the native concentration of hmw cfDNA using existing methods is technically challenging, time-consuming, and expensive.

We have developed a novel technology which utilizes Alternating Current Electrokinetics (ACE) to isolate hmw cfDNA directly from blood. Furthermore, we integrated this technology into a handheld device which utilizes a smartphone for power, instruction transmission, optical detection, image processing, and data transmission. The detection of hmw cfDNA in blood plasma demonstrated the performance of the device. We are continuing development of this device as a future point of care in vitro diagnostic.